MARKING SCHEME

GENERAL MATHEMATICS $9^{\text {TH }}$

SECTION-A

Total Time: 20 minutes
Total Marks: 15

1	2	3	4	5	6	7	8	9	10
C	A	C	B	A	A	B	A	B	A
11	12	13	14	15					
B	C	C	B	D					

Time: 2 Hours 40 Minutes

SECTION-B

Total Marks: 36

Q1. Attempt any 9 of the following short questions. Each question carries equal marks.

i. Hafsa got 84% of the total marks in her annual examination. If she had obtained 861 marks. Find out total marks in the examination?

Solution:
84% of $x=861$

$\frac{84}{100} \times x=861$
$x=861 \times \frac{100}{84}$
$\longrightarrow 1$
$\mathrm{x}=1025$
ii. Hafeez had trade goods worth Rs.175,000 and a cash amount of Rs. 90,000. If his wife possessed jewelry worth Rs. 84,000 , find the amount of zakat payable by him?

Solution:

Value of trade goods $=175,000$
Cash amount $=90,000$
Value of Jewelry $=84,000$

Total amount $=175,000+90,000+84,000$
Total amount $=349,000$

1

1

1

iii. Ali bought 8 dozen eggs at the rate of Rs. 70 per dozen. 6 eggs were found broken. He sold remaining eggs at the rate of Rs. 7 per egg. Find his profit or loss.

Solution:

Cost price $=70 \times 8$
Cost Price $=560$

Total number of eggs $=8$ dozen
Total number of eggs $=8 \times 12$
Total number of eggs $=96$
Number of broken eggs=6
Remaining eggs $=96-6$
Remaining eggs $=90$
Sale price $=90 \times 7$
Sale price $=630$
Sale Price> Cost Price
So, Profit has occurred
Profit $=$ Sale Price - Cost Price
Profit $=630-560$
Profit=70
iv. Mr. Jawad deposits Rs. 90,000 in a Profit Loss Saving (PLS) account. If the profit rate is 12% then how much profit would he get after two months.

Solution:

Profit for one month $=\frac{\text { Principal Amount } \times \text { Rate of profit }}{12}$

Profit for one month $=90,000 \times \frac{12}{100} \times \frac{1}{12}$

Profit for one month $=900$
Profit for two months $=900 \times 2$
Profit for two months $=1800$
v. If the worth of the property of a person is Rs. $5,000,000$. How much tax would he pay at the rate of 5%.

Solution:

Total value of Property $=5,000,000$

Tax Rate = 5\%
Tax $=$ Rate \times Value of property

Tax $=5 \% \times 5,000,000$
Tax $=\frac{5}{100} \times 5,000,000$

Tax=250,000
vi. Simplify: $\sqrt{\frac{X^{a}}{X^{c}}} \times \sqrt{\frac{X^{c}}{X^{a}}} \times \sqrt{\frac{X^{a}}{X^{b}}}$

Solution:

$$
\begin{align*}
& \sqrt{\frac{X^{a}}{X^{c}}} \times \sqrt{\frac{X^{c}}{X^{a}}} \times \sqrt{\frac{X^{a}}{X^{b}}}=\sqrt{X^{a} X^{-c}} \times \sqrt{X^{c} X^{-a}} \times \sqrt{X^{a} X^{-b}} \\
& =\sqrt{X^{a} \cdot X^{-c} \times X^{c} \cdot X^{-a} \times X^{a} X^{-b}} \\
& =\sqrt{X^{a} \cdot X^{-a} \times X^{c} \cdot X^{-c} \times X^{b} X^{-b}} \\
& =\sqrt{X^{a-a} \cdot X^{c-c} \cdot X^{b-b}} \\
& =\sqrt{X^{0} \times X^{0} \times X^{0}} \\
& =\sqrt{1 \times 1 \times 1} \\
& =\sqrt{1} \\
& =\mp 1
\end{align*}
$$

vii. $\quad \log _{8} x=\frac{4}{3}$

Solution:

$\log _{8} x=\frac{4}{3}$
$\therefore \log _{a} y=x$
$\therefore y=a^{x}$
$x=8^{\frac{4}{3}}$
$x=\left(2^{3}\right)^{\frac{4}{3}}$
$x=2^{4}$
$x=16$
viii. Find the $12^{\text {th }}$ term of an Arithmetic Progression (AP) $18,15,12,9, \ldots$

Solution:

$$
\begin{align*}
& a_{1}=18 \tag{1}\\
& d=15-18 \\
& \mathrm{~d}=-3 \\
& a_{12}=?
\end{align*}
$$

Since,

$$
a_{n}=a_{1}+(n-1) d
$$

$$
a_{12}=18+(12-1)(-3)
$$

$$
a_{12}=18+(11)(-3)
$$

$$
a_{12}=18-33
$$

$$
a_{12}=-15
$$

ix. Find three geometric means between $\frac{1}{27}$ and 3 .

Solution:

Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}$ be 3 Geometric means between $\frac{1}{27}$ and 3 .
Then,
$\frac{1}{27}, \mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, 3$ are in Geometric mean.

$$
a_{1}=a=\frac{1}{27}, \quad \mathrm{n}=5, \quad a_{n}=3, \mathrm{r}=?
$$

Then,

$$
\begin{aligned}
& a_{n}=a_{1} r^{n-1} \\
& 3=\frac{1}{27} r^{5-1} \\
& 3=\frac{1}{27} r^{4} \\
& 3 \times 27=r^{4} \\
& 81=r^{4} \\
& (3)^{4}=(r)^{4}
\end{aligned}
$$

So,
$r=3$

Therefore,

$$
\begin{align*}
& \mathrm{G}_{1}=\mathrm{ar}=\frac{1}{27} \times 3=\frac{1}{9} \tag{1}\\
& \mathrm{G}_{2}=\mathrm{a} r^{2}=\frac{1}{9} \times 3=\frac{1}{3} \\
& \mathrm{G}_{3}=\mathrm{a} r^{3}=\frac{1}{3} \times 3=1
\end{align*}
$$

\qquad
Hence,
$\frac{1}{9}, \frac{1}{3}$ and 1 are 3 Geometric mean between $\frac{1}{27}$ and 3 .
X. Plot the points W, X, Y and Z in the $X Y$ plane: $W(3,1), X(-2,-4), Y(-$ $5,6), Z(3,-3)$.

Solution:

W $(3,1), X(-2,-4)$
$Y(-5,6), Z(3,-3)$
Diagram:

xi. Salam has a post-paid connection. Last month he consumed a total of 3 hours and 20 minutes time for calls. If per 30 seconds call charges is Rs.0.50, then what was his bill?

Solution:

Consumed time= 3hrs and 20 minutes
Consumed time in minutes $=200$ minutes
Call charges per 30 seconds $=$ Rs.0.5
Call Charges per minute= Rs.1.0
Cost of 200 minutes=Rs. 200
Line Rent=Rs. 499
Line Rent= Rs. 699
xii. If $X=\{1,2,3\}$ and $Y=\{4,5,6\}$, Write an ONTO function from X to Y.

Solution:

$$
\begin{aligned}
& X=\{1,2,3\} \\
& Y=\{4,5,6\} \\
& X \times Y=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\} \\
& R=\{(1,4),(2,5),(3,6)\}
\end{aligned}
$$

Domain $=\{1,2,3\}$
Domain $=X$
So, R is a function
Range $=\{4,5,6\}$
Range $=Y$

So, R is onto function from X to Y.

Section-C

Q2. 10 men take 12 hours to spray insecticides on fruit trees spread over 40 hectares. How many men will be required to spray 32 hectares area in 8 hours?

Solution:

Taking Compound Proportion

10:x
10:x

Product of means $=$ Product of Extremes

$$
x \times 8 \times 40
$$

$10 \times 12 \times 32$

Q3. Draw the graph of equation:

$$
3 x+y=6
$$

Solution:

$$
\begin{gathered}
x=\frac{10 \times 12 \times 32}{8 \times 40} \\
x=12
\end{gathered}
$$

$\left.\begin{array}{l}3 x+y=6 \\ y=6-3 x\end{array}\right]$
X 0 1 2 -1 -2 y 6 3 0 9 12
Using

$$
y=6-3 x
$$

Q4. From the following distribution

Daily Wages (In Rupees)	$112-116$	$117-121$	$122-126$	$127-131$	$132-136$
Number of Workers	3	20	11	4	5

ii. Find the class boundaries for each group
iii. Calculate Median wages.

Solution:

Class limits	Frequency	Class Boundaries	Cumulative Frequency
$112-116$	3	$111.5-116.5$	3
$117-121$	20	$116.5-121.5$	$33+20=23$
$122-126$	11	$121.5-126.5$	$23+11=34$
$127-131$	4	$126.5-131.5$	$34+4=38$
$132-136$	5	$131.5-136.5$	$38+5=43$
	$\Sigma f=43$		

Median $=\frac{n^{\text {th }} \text { term }}{2}$
Median $=\frac{43}{2}=21.5$
So,
Median Lies between 116.5-121.5 group
Median $=l+\frac{h}{f}\left(\frac{n}{2}-c\right)$
$l=116.5$
$h=121.5-116.5=5$
$f=30$
$c=3$
Median=116.5+ $\frac{5}{20}(21.5-3)$

Median=116.5+0.25(18.5)
Median=116.5+4.625
Median=121.125

Q5. If $U=\{1,2,3,4,5,6,7\}, A=\{1,2,3\}, B=\{3,4,5\}$. Then with the help of Venn diagram verify Dorgan's Law:

$$
(A \cup B)^{\prime}=A^{\prime} \sqcap B^{\prime}
$$

Solution:

L.H.S $=(A \cup B)^{\prime}$

$\underline{\text { R.H.S }}=A^{\prime} \cap B^{\prime}$
$A^{\prime}=U-A$
$A^{\prime}=\{1,2,3,4,5,6,7\}-\{1,2,3\}$
$A^{\prime}=\{4,5,6,7\}$
$B^{\prime}=\{1,2,3,4,5,6,7\}-\{3,4,5\}$
$B^{\prime}=\{1,2,6,7\}$
$A^{\prime} \cap B^{\prime}=\{4,5,6,7\} \cap\{1,2,6,7\}$
$A^{\prime} \cap B^{\prime}=\{6,7\}$

